MEMORY EFFICIENT HYPERELLIPTIC CURVE POINT COUNTING
نویسندگان
چکیده
منابع مشابه
Memory efficient hyperelliptic curve point counting
Let E be a hyperelliptic curve of genus g over a finite field of degree n and small characteristic. Using deformation theory we present an algorithm that computes the zeta function of E in time essentially cubic in n and quadratic memory. This improves substantially upon Kedlaya’s result which has the same time asymptotic, but requires cubic memory size. AMS (MOS) Subject Classification Codes: ...
متن کاملElliptic and Hyperelliptic Curve Point Counting through Deformation
Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microlm, elektronisch of op welke andere wijze ook zonder voorafgaandelijke schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microlm, electronic or any other means...
متن کاملA Quasi Quadratic Time Algorithm for Hyperelliptic Curve Point Counting
We describe an algorithm to compute the cardinality of Jacobians of ordinary hyperelliptic curves of small genus over finite fields F2n with cost O(n ). This algorithm is derived from ideas due to Mestre. More precisely, we state the mathematical background behind Mestre’s algorithm and develop from it a variant with quasiquadratic time complexity. Among others, we present an algorithm to find ...
متن کاملPoint Counting in Families of Hyperelliptic Curves
Let EΓ be a family of hyperelliptic curves defined by Y 2 = Q(X,Γ), where Q is defined over a small finite field of odd characteristic. Then with γ in an extension degree n field over this small field, we present a deterministic algorithm for computing the zeta function of the curve Eγ by using Dwork deformation in rigid cohomology. The complexity of the algorithm is O(n) and it needs O(n) bits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2011
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042111004034